New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.
نویسندگان
چکیده
Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected antifolate-resistant strains, and with defined genetic knockouts of several pteridine metabolic genes. In Leishmania, resistance to the antifolate methotrexate is mediated through several mechanisms singly or in combination, including alterations in transport leading to reduced drug influx, overproduction (R-region amplification) or point mutation of dihydrofolate reductase-thymidylate synthase (DHFR-TS), and amplification of a novel pteridine reductase (PTR1, encoded by the H-region). All of the proteins involved are potential targets for antifolate chemotherapy. Notably, parasites in which the gene encoding dihydrofolate reductase (DHFR) has been deleted (dhfr-ts- knockouts) do not survive in animal models, validating this enzyme as a target for effective chemotherapy. However, the properties of pteridine reductase 1 (PTR1) suggest a reason why antifolate chemotherapy has so far not been successful in trypanosomatids. PTR1, by its ability to provide reduced pterins and folates, has the potential to act as a by-pass and/or modulator of DHFR inhibition under physiological conditions. Moreover, PTR1 is less sensitive to many antifolates targeted primarily against DHFR. These findings suggest that successful antifolate chemotherapy in Leishmania will have to target simultaneously both DHFR and PTR1.
منابع مشابه
Molecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania
Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pterid...
متن کاملThe roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.
Trypanosomatid protozoans depend upon exogenous sources of pteridines (pterins or folates) for growth. A broad spectrum pteridine reductase (PTR1) was recently identified in Leishmania major, whose sequence places it in the short chain alcohol dehydrogenase protein family although its enzymatic activities resemble dihydrofolate reductases. The properties of PTR1 suggested a role in essential pt...
متن کاملMolecular cloning, expression and enzymatic assay of pteridine reductase 1 from Iranian lizard Leishmania.
BACKGROUND Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pteridi...
متن کاملPteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy.
Protozoan parasites of the trypanosomatid genus Leishmania are pteridine auxotrophs, and have evolved an elaborate and versatile pteridine salvage network capable of accumulating and reducing pteridines. This includes biopterin and folate transporters (BT1 and FT1), pteridine reductase (PTR1), and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Notably, PTR1 is a novel alternative pteri...
متن کاملCrystallization of recombinant Leishmania major pteridine reductase 1 (PTR1).
The enzyme pteridine reductase (PTR1) has recently been discovered in the protozoan parasite Leishmania and validated as a target for therapeutic intervention. PTR1 is responsible for the salvage of pteridines and also contributes to antifolate drug resistance. Structural analysis, in combination with ongoing biochemical characterization will assist the elucidation of the structure-activity rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parasitology
دوره 114 Suppl شماره
صفحات -
تاریخ انتشار 1997